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SUMMARY 
The present paper is concerned with the problem of thermal stresses in beams when the temperature distribution 
is a polynomial in the axial coordinate where the coefficients of the polynomial are functions of the two remaining 
coordinates. We consider the case of the homogeneous and isotropic beams and the case of the composite beams--when 
the outer contour of the cross-section contains an arbitrary number of other contours each enclosing a different 
homogeneous isotropic material. 

1 .  I n t r o d u c t i o n  

The general theory of the thermal stresses in elastic beams has been studied only when the 
temperature distribution is restricted to a polynomial of the first degree in the axial coordinate 
(see e.g. [1]). 

In this paper we consider the mathematical problem of the thermal stresses in beams when 
the temperature distribution is a polynomial of the r degree in the axial coordinate x3, namely 

T =  ~ Tk(xl, x2)xk3. (1.1) 
k=0 

We assume that the functions Tk(xl, x2) are given. 
We consider homogeneous beams and  composite beams. In the later case we assume that 

the outer contour of the cross-section contains an arbitrary number of other contours each 
enclosing a different homogeneous isotropic material, i.e. a cylindrical beam with longitudinal 
holes which are completely filled with beams of different homogeneous isotropic materials. We 
shall assume the materials to be welded together along the interfaces. 

2 .  B a s i c  E q u a t i o n s  

We consider a cylindrical beam of length l bounded by plane ends perpendicular to the genera- 
tors. The cross-section S is assumed to be a simply-connected region, bounded by a closed 
Liapunov curve L. We suppose that body force is absent and the lateral surface is free of applied 
force. We suppose the beam to be fixed at one end and to be kept in thermoelastic equilibrium 
under the action of a given temperature, the loading applied to the free end being statically 
equivalent to zero. 

We take the right-hand axes of reference Oxl, Ox2 in the plane of the free end and Ox3 
directed parallel to the generators and into the material. 

The basic equations in the linear static theory of thermoelasticity for homogeneous and 
isotropic solids are [1]:  
- equilibrium equations 

tij, j = O, (2.1) 

- constitutive equations 

Ev E Ec~ 
t~j - (l + v)(l__ 2v) err~ij + ~ eij 1--2v T flj ' (2.2) 

- strain-displacement relations 

2eij = ui, j + us, i- (2.3) 
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In these equations we have used the following notations : tij are components of the stress 
tensor, eij are components of the strain tensor, T is the temperature measured from the constant 
absolute temperature of the natural state, ui are components of displacement vector, 61~ is the 
Kronecker's delta, E, v, c~ are the characteristic constants of the material, and the comma 
denotes partial derivation with respect to the variables xv 

On the lateral surface of the beam we have the following conditions 

ti= n= = O, (i = 1, 2, 3 ; e = 1, 2), (2.4) 

where (nl, n2, O) are the direction cosines of the outward normal to the lateral surface. 
On the plane x3 = 0 we have the following conditions [2] 

f t 1 3 d a = O '  5 t 2 3 d a = O '  

f s t33da = 0 ,  

f x 2 t 3 3 d ~ = f s x a t 3 3 d a = O ,  

f (xl t23-  x2 t 3)d  = o . 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

We assumed that the temperature distribution has the form (1.1). Let us denote by (A) the 
problem of determination of thermal stresses in the considered beam when the temperature 
distribution has the form 

T = f ( x  1, x2) x~3, (2.9) 

where n is a positive integer or zero, and the function f ( x l ,  x2) is known. 
Obviously, if we know the solving of the problem (A) for any n then, according to the linearity 

of the problem, we can determine the solution in the case (1.1). 
We denote by (B) the problem of determination of thermal stresses in the same beam if the 

temperature has the form 

T = f ( x , ,  x2) x~ +l , (2.10) 

and the problem (A) is assumed to be solved. 
If the problem (B) is solved and we know the solution of the problem (A) for n = 0, then we 

can obtain the solution for n = 1, and so on. This fact leads to the solution of the problem in 
which the temperature has the form (1.1). 

Thus, to solve the initial problem we must solve the problem (A) for n = 0 and the problem (B). 

3. Homogeneous Beams 

Let us consider a homogeneous and isotropic beam under the action of the temperature dis- 
tribution T =  f ( x l ,  x2). 

We assume that the components of the displacement vector have the form 

= 1 2 2 (bxz+C)+V,(xa,  x2 ) ul -~a[x3+v(xl-x2)]-vx, 

u2 = - �89 [x~ - v (x~ - x2) ] _ vx2 (ax, + c) + v2 (x l, x2), (3.1) 

u3 = (axl + bx2 + c)x3 , 

where the functions v,(Xx, xa), (e = 1, 2) and the constants a, b, c will be determined in the 
following. 

If we introduce the notations 
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2g~7 = ve,~+v~, ~ , 

Ev E 
a e ~ -  ( l+v ) (1 -2v )  e . . a a ,  + - -  

from (2.2), (2.3), (3.1), (3.2) we obtain 

tt~ ~ -=0-~ ,  t ~ 3 = 0 ,  

t33 = E(axt + bx2 +c)+ wrp~- Ec~T , 

The equilibrium equations (2.1) become 

r = 0 ,  

and the boundary conditions (2.4) are satisfied if 

g~  
1 - 2 v  Tf~r' (fl, 7, P = 1, 2 ) ,  (3.2) 

(/3, y = 1, 2) (3.3) 

(3.4) 

a~ana = 0,  on L ,  (c~, fi = 1, 2). (3.5) 

From (3.2), (3.4), (3.5) it follows that the functions v~, e~a, a~a satisfy the equations of the 
thermoelastic plane strain [1] for temperature distribution T=f(x~,  Xz). 

The conditions (2.5), (2.8) are satisfied on the basis of the relations (3.3). If the above thermo- 
elastic plane strain problem is solved, from (2.6) and (2.7) we obtain 

1 
a = ~-~ [ I l lM2-I12Ml+(x~176  

1 
b = ~ [I22M~-I~zM2+(x~176 (3.6) 

1 o c = ~ P - a x  1 -bx  ~ 

where 

P =f~ z Fdty, M j = f  x2Fda M2=f  x l F da ,  F=E~T-v traa ,  s ~ f z  &r, 

-/13 = f  (X2--XO) 2dO', 112 = I (xl-x~176 122 = [ (x1-x~ 
I2 i :  i ;  

d = I~ 122- I~2, (3.7) 

and x ~ x ~ are the coordinates of the centroid of the S. Thus, the problem (A) for n = 0 is reduced 
to a two-dimensional problem. 

In what follows we seek to solve the problem (B). We denote by u*, e*, t* (i, j = 1, 2, 3) 
respectively the components of displacement vector, the components of strain tensor, the 
components of stress tensor from the problem (A) and by ui, eq, tij the analogous functions 
from the problem (B). 

We assume that the functions u*, e*, t-*. , are known. 
We try to solve the problem (B) assuming that the components of the displacement vector 

have the form 

ul=(.+a) uTax3-vxl(�89 2 1 2 x 3 -  ~ax3 + ~avx2 + vl (xl, x2) , 

u2 = ( n + l )  * 1 1 2 1 2 , U 2 d x  3 - v.~ 2 (axx + ybx2 + c)+ zx 1 x3 -gbx3 +gbVXl + v2 (xl, x2) 

u3 = (n + l) [ f ~  u* dx3 + xa(axl + bx2 +c)+ eb(xl, x2)] , (3.8) 

where the functions v~ (x~, x2), (~ = 1, 2), ~b (x~, xz) and the constants a, b, c, r will be determined 
in the following. 
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From (2.3) and 

e,~ = (n+ 1) 

e l3  = (nq-  1) 

e23 =- (n-t- 1) 

e33 = (n-t- 1) 

where 

(3.8) we obtain 

[ f  ~ ~ e*pdx3- v(axl + bx2 + c)6~ + e~] , 

I f2  ~ e*3dx3+axl+bxz+c+u~(xl,  x2, 0)] ,  

28~ = v~,~ + va.~ , 

If we note 

Ev E 
o'~ - (1 +v)(1-2v)  %p6~p + - ~ v  ~ '  

from (2.2), (2.9), (2.10), (3.9), (3.10) we get 

t~ = (n+ 1) 

(3.9) 

t~  = (n + 1) 

{? t23 = (n+ 1) 
0 

where 

(cq/~ = 1, 2). (3.10) 

(~,/3, p = 1, 2), (3.11) 

If ~o t* j~ + ~,~ + ~,~u~ (x~, x:, 0)], 

{f~ ~ t*~dx3 + u[O ~-~x~+~(~, x~, 0)]}, 

t*3 dx3 +kt [~ 2 +'CXl+U* (xl, x2, 0)]}, 

t~  ax~ + E(ax~ + b ~  + ~)+ vo,~+ (~ + 2l,)u* (x~, x~, 0)] ,  (3.12) 

Ev E (3.13) 
2 -  ( l + v ) ( 1 - 2 v ) '  2 / ~ -  l + v "  

The first two of the equilibrium equations (2.1) give 

a~a,a = F~, (3.14) 

where 
F~ -= -t*3(xl,  x2, 0)-2u~.~(x,, x2, 0), (a, fi = 1, 2). (3.15) 

From the first two of the relations (2.4) we obtain the boundary conditions 

o~ana = -2n~u~(xl, Xz, 0), on L .  (3:16) 

We see that the functions v,(xa, x2), e~p(xl, x2), cr,a(Xx, xz), (e,/~= 1, 2) satisfy the equations 
of elastic plane strain [3] problem (3.10), (3.11), (3.14), (3.16). 

Let us show the existence of the solution of this problem. We denote by %p a particular 
solution of the system (3.14) and write 

~r~ = ~/~ + ~r~ 

The functions o-~ satisfy the system 

a~162 = 0,  (3.17) 

and the boundary conditions 
o o~ana=f~, on L ,  (c~,/?= 1,2), (3.18) 

Journal of Engineering Math., Vol. 6 (1972) 155-163 



On the thermal stresses in beams 159 

where 

f~ = - 2n, u* (xa, x2, 0)-  z,r . (3.19) 

The conditions for the existence of the solution of the boundary value problem (3.17), 
(3.18) are [3] 

f c fxds=O,  fLfzds=O, fL(x~f2--x2fl)ds=O. (3.20) 

Using (3.15), (3.19) and the divergence theorem, we obtain 

fL 
L d s  = - | [ ~ . ~ , ~ + z . ~ , . ( ~ ,  x: ,  0 ) ] a~  = 

2 

: t~3 dx3, 

f ( x l A  J x2, 0)-xl~2~,,-?l~ul~(xl, x~, 0)]a~ = 
f 

~ X2 f l ~d~ l (Xl ,  

Is [xxt*3(xa'x2'O)-x2t*3(Xl'X2'O)]da' (~= 1, 2), 

so that the conditions (3.20) are satisfied, because the functions t* satisfy the conditions (2.5), 
(2.8). 

The components of stress tensor t23, ta 3, t33 given by (3.12) must satisfy the last of equilibrium 
equation. We obtain for unknown function r  x2) the following equation 

1 
A~ = - u *  ~(Xl, x~, 0) - ~ t ~ ( x ,  x~, 0), (~ = 1, 2), (3.21) 

where A is the two-dimensional Laplacian operator. 
From the last of the boundary conditions (2.4) we obtain 

0~ 
0~ = ~(xznl-x lnz)-n~u*(xl '  x2, 0), on L .  (3.22) 

Let us show that the boundary value problem (3.21), (3.22) has a solution. Let q~ be the solution 
of the equation 

Acp = 0 ,  

with the boundary condition 

g~0 
On X2F/1--Xln 2, on Z .  

Obviously, the function ~o exists. Let us introduce the function • by 

~' ='r~o+Z+~,,  

where Z is a particular solution of the equation (3.21). 
From (3.21)-(3.25) it follows that the function ff satisfies the equation 

AqJ = 0 ,  

and the boundary condition 

g0 0x 
On u*(xl, x2, O)n, On -~ f '  on L 

The condition for the existence of the function ff is 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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Lfds = O. 

Using the divergence theorem we see that this condition is satisfied in our case 

f f L f d s = -  f [u*=(xl, x>O,+Ax]da= l f z  �9 , x 2 ,  o ) d o  = o ,  

because the functions t* satisfy the conditions (2.5)-(2.8). 
From (2.6) and (2.7) we obtain 

1 
a = gd [h lM:- I I2M1 + ( x ~  

D. Ie~an 

(3.28) 

b : Edl [i22M _ia2M2+(xOi,2_xOi22)P] (3.29) 

1 0 c = ~ P - a x l " b x ~  

where 

F = - va==-(2+ 2#)u~ (x,, xz, 0), 

I=a, S and d being given by (3.7). 
From (2.8), (3.12), (3.25) we determine the constant z 

zD= fx  {x2[z'l+O'~+u*(xl 'x2'O)]-x~[z'2+tP'2+u~(xt 'xz'O)]}da' (3.30) 

where D is the torsional rigidity [31 

D = ~ (x~+x2+xlq),2-x2rp,1)da. (3.31) 
3 2 

It is known [3] that D >0. 
The conditions (2.5) are identically satisfied on the basis of the equilibrium equations and the 

boundary conditions. For example, for the first of them we have 

+ ( n + l )  i xlt*3da=O, x 3 = 0 .  (3.32) 
3 2 

4. Composite Beams 

Let us assume that the cross-section X consistsof the assembly of the regions S O and S i (j = 1, 2, 
..., m + 1), Zo being a multiply-connected region, bounded by the closed curves Lj (j = 1, 2 . . . . .  
m +  1) possessing no common points; Lm+ r is the outer boundary of the region Z and con- 
tains the curves Lj ( j= 1, 2, ..., m). All the Sj  are finite and simply-connected, bounded by the 
corresponding curves Lj (j = 1, 2 . . . . .  m). Let us assume that the matter filling each of the regions 
Xo and S~ (j = 1, 2 . . . . .  m) is homogeneous and isotropic, while passing from one medium to 
another the thermoelastic properties are different. 

The displacement vector and the stress vector must be continuous in passing from one 
medium to another so that we have the conditions 

[Uk~, = [U~]o, (4.1) 

[tk~nJ, = [tk=n=]o, on Li, (4.2) 

tk~n~=O, onL, ,+ , ,  ( i=l ,  2 , . . . , m ; k = 1 , 2 , 3 ; o ~ = l ,  2), (4.3) 
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where we have indicated that the expressions from parentheses are calculated for the material 
from the regions S~ (i= 1, 2 . . . . .  m) and So. Let v~, E~ and ~ be the caracteristic constants of the 
material from the region Z~ (i = 0, 1, 2 . . . .  , m). 

We consider the three problems p(k) (k= 1, 2, 3) of elastic (T=0) plane strain [3 ]  without 
body forces, in which the components of the displacement vector w(~ ) and the'components of the 
stress tensor -.(~) (e, fl = 1, 2" k = 1, 2, 3) satisfy the conditions 

(k) r/ ---- [ ~  ~3, [ ~ p ] o ,  
[u , (k ) l  [- , / , ,(k)] -~- //(.k) (4.4) '~a J i - - L ' ~ a  JO ~ a  , o n  L i ,  

z(k)n 0 on  Lm+ a~ ~ , 1 ,  
where 

(1) 1 2 2 
g .  = ~(vi--Vo)(X,--x2) ,  
gl~ ) = ( v , -  %)xl  x~ , 
gl? = ( ~ , - % ) ~ ,  

( i = 1 , 2  . . . . .  m ;  a, f l = l ,  2 ;  k = 1 , 2 , 3 ) ,  

g!~ ) = ( ~ , -  Vo)~, ~ : ,  
~,(~)_ _ � 8 9  : (x, -x~), Ui2 - -  

g~) = (~,- ~ o ) ~  �9 (4.5) 

We assume that w~ ) and ~.(k) ~ are known [3], [4]. 
Let us consider the following functions defined on E~ 

w, = - � 89  [x~ + v, (x~ - x~)] - by, x1 x2 - ev, x,  + v, (x~, x2), 

wz = - �89 [ x ~  - v i ( x #  - x l )  ] - a v i x ,  x2  - c v i x 2  + vz (x l, x 2 ) ,  

w 3 = (ax,  + bx2 + e )x3 ,  (4.6) 

where the functions v~(x~, x2), (~ = 1, 2) and the constants a, b, e will be determined in the 
following. 

We try to determine the solution of the stated problem assuming that the components of 
the displacements vector have the form 

(1) (2) u~ = w~ + aw~ + bw~ + cw (a) , (~ = 1, 2), 

u3 = w3. (4.7) 

Taking in account the relations (4.4), (4.5) we see that the functions (4.7) are continuous in 
passing from one medium to another if 

[v,], = [V~]o, on L, (i = 1, 2 . . . .  ,m ; ~ = 1, 2). (4.8) 

If we introduce the notations (3.2), from (2.2), (2.3), (4.7) we obtain 

6r = a ~  + az(~ ) + h"r(2) ..L. r-r(3) ~ .~  - ~ - , p  , 6 3  = O,  ~(~, fl = 1, 2 ) ,  

t3 3 Ei(axl  +bx2 + c ) +  (1) (2) c (3) _ = vi(azaa +bzpp + zpp) E i a i T ,  (4.9) 

in the region 2;i (i = 0, 1, 2, ..., m). 
From (2.1), (2.4), (4.4) it follows that a~a(x~, x2) must satisfy the equations 

(4.10) 

( i=  1,2 . . . . .  m ;  ~ , f i=  1, 2). 

(4.11) 

and the conditions 

a~ana= O, on L,.+I , [cr~pnll]i.= [a~pnp]o, on Li ,  

Obviously, the functions v,(xl ,  x2) are the components of the displacement vector from the 
thermoelastic plane strain problem (4.8), (3.2), (4.10), (4.11) [4], [5], for temperature distribu- 
tion T = f ( x l ,  x2). The conditions (2.5), (2.8) are satisfied on the basis of the relations (4.9). 
From (2.6) and (2.7) we obtain 

a = 2 ( K 2 2 m l - - K 2 1 m 2 ) ,  b = ( K l l m 2 - K 1 2 m , ) ,  

c = - adl - bd2 + P,  (4.12) 
where 
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1 ~ f [Eix#~-rff('~ d3= ~ f [Eil-1)iT(3)]dtY' d# = d3 z, i=0  i=0  Zi 

1 i P =d3 i=0 ~i 

K~a= ~ f h~~ h:~ 
i=0  2~i 

= v,%~jj ad , d=Kl lK22-K22,  (a, f l = l ,  2). (4.13) 
i=0  Z~ 

Making use of the results from [3-1, we have K 1 2  = K 2 i  and d~0 .  
In what follows we seek to solve the problem (B). 
We try to satisfy the conditions of the problem taking the displacements in the form (3.8), 

from the case of the homogeneous beams. Obviously, in our case the functions u*, t* satisfy 
the conditions (4.1)-(4.3). 

F rom (3.8) and (4.1) it follows that the function �9 must be continuous on 27 and that 

[V~-1i-- [V~]0 = g~i, on Li, (i = 1, 2, . . . ,  m ; ~ = 1, 2), (4.14) 

where 

g~, = [ k J o -  [k J , ,  

[k,-1i = - vi x l (�89 axl + bx2 + c) + �89 i x~z, [k2-1/= - vi x 2 (ax 1 + �89 z + c) + �89 bv, x~, 
(i = O, 1, 2 . . . . .  m). (4.15) 

The functions tr~ given by (3.11) satisfy in each region S~ (i=0,  1, 2, ..., m) the equation 
(3.14). F rom (3.12) and (4.2), (4.3) we obtain the following conditions 

[a~n~],-[a~n~]o= [h~-1,-[h~-1o, on L~, ( i=  1,2 . . . . .  m), 

a~anp= [ h J o ,  on L ~ + l ,  (4.16) 

where 
Eivi 

[h~-1, = - (1 + v,)(1-2v,) n~u*(x~, x2, 0), (i = 0, 1, 2 . . . . .  m). (4.17) 

The conditions for the existence of the solution of the problem (3.10), (3.14), (4.14), (4.16) are 
[4], [6] 

- ~=o ~ f~j F~da + iL~+l h~ds+ j=l ~ fL~ ([hJ~ 

-- i=o~ Is (XlF2-x2Fi) dff + fL~§ (xlh2-x2hl) ds + 

+ ~ f {[xih2-x2hi]~ (4.18) 
j= 1 Lj 

Taking into account the relations (3.15), (4.17), the divergence theorem and the fact that the 
normal  vector is outward to Zo the conditions (4.18) become 

f t*z(xl, x2,0)da=O, ~. f t* 3(x 1,x2,0)da=O, 
j = o  J2~ i j = o  J z j  

j=  o ~j 
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The above conditions are satisfied because the functions t* satisfy the conditions (2.5), (2.8). 
The function ~ ( x l ,  x2) must be continuous on S and satisfies in each region Si (i=0, 1, 2, 

.... m), the equation (3.21). From (3.12) and (4.2), (4.3) for k=  3, we obtain the following condi- 
tions 

# o  - # i  
o i 

where 
qi = (#i-#o)u* (xl, x2, 0)n~. (4.20) 

Let ~o be the solution of the equation (3.23) in each region X~, continuous on 2; and which 
satisfies the conditions 

#o - #i = ( # o - # i ) ( X z n l - x l n z ) ,  on Li,  
�9 0 i 

( i = l ,  2 , . . . , m ,  m + l  ; # m + ~ = 0 ) .  (4.21) 

The function q9 (xt, x2) exists [3]. If we make the substitution (3.25) where )~ is a particular 
solution of the equation (3.21) in the region 2;i (i=0, 1, 2, ..., m), it follows that the function 

(xl, x2) satisfies the equation (3.23) in each Zi, is continuous on S and satisfies the boundary 
conditions 

#o - #~ = Pi, on Li,  (i = 1, 2, . . . ,  m,  m +  1 ; #m+ ~ = 0), (4.22) 
0 i 

where 

I lo § Pi = q i - # o  #i �9 (4.23) 
i 

The condition for the existence of the function ~, is [3] 
m+l 

f pfls=O. 
i= 1 Li 

Using the divergence theorem we get 

m+l m 

i=1 , Li Lm+l i=0 21 

+ i=z ~ fL, (#i--#~ O)n~ i=o~f O)da~-O,  

because t~3 satisfies the relation (2.6). 
From (2.6)-(2.8) we can determine the constants a, b, c and z. The conditions (2.5) are iden- 

tically satisfied. 
Thus we have solved the problem (B) and hence the initial problem is solved. 

= q i + z ( # o - # i ) ( x 2 n l - x l n 2 ) ,  on Li, 

( i = l ,  2 , . . . , m ,  m + l  ; # , , + i = 0 ) ,  (4.19) 
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